Unsupervised Domain Adaptation Based on Source-guided Discrepancy

Seiichi Kuroki^{1,2} Nontawat Charoenphakdee^{1,2} Han Bao^{1,2} Junya Honda^{1,2} Issei Sato^{1,2} Masashi Sugiyama^{2,1} 1: The University of Tokyo 2: RIKEN AIP

Abstract

Proposed a new discrepancy measure for unsupervised domain adaptation.

- Exploits all available information including labels in the source domain unlike existing discrepancy measures.
- Has a tighter generalization error bound and is computationally efficient.

Unsupervised Domain Adaptation

In unsupervised domain adaptation, we consider the following setting.

Generalization Error Bound

Theorem 1If ℓ obeys the triangular inequality, $R_T^\ell(h, f_T) - R_T^\ell(h_T^*, f_T) \leq \varsigma_{\mathcal{H}}^\ell(P_T, P_S) + R_S^\ell(h, h_S^*) + R_T^\ell(h_S^*, h_T^*).$ Regret arising from using hEstimation error in
the source domainGap of the best classifiers:
Uncontrollable in this problem \rightarrow The Lower S-disc, the better generalization.

Estimation Algorithm

- Distributions in the source and target domains are related but not the same.
- Labeled data in the source domain and unlabeled data in the target domain.

Ex. Natural language processing, speech recognition, computer vision

To select a good source, labels in the source domain might be useful.

Related Work

S-disc estimation can be reduced to a cost-sensitive classification for the 0-1 loss:

\mathcal{X} -disc [Mansour et al., 2009]

The difference between expected losses of the two domains for the worst pair of hypotheses:

$$\operatorname{disc}_{\mathcal{H}}^{\ell}(P_T, P_S) = \sup_{h, h' \in \mathcal{H}} \left| R_T^{\ell}(h, h') - R_S^{\ell}(h, h') \right|$$

• The computation of \mathcal{X} -disc is intractable.

$d_{\mathcal{H}}$ [Ben-David et al., 2010]

A computationally efficient proxy of \mathcal{X} -disc:

 $d_{\mathcal{H}}(P_T, P_S) = \sup_{h \in \mathcal{H}} \left| R_T^{\ell_{01}}(h, 1) - R_S^{\ell_{01}}(h, 1) \right|$

	Using source labels	Generalization error bound	Computation complexity
$\mathcal{X} ext{-disc}$	No	Loose	High
$d_{\mathcal{H}}$	No	N/A	Low
$S ext{-disc}$ [Proposed]	Yes	Tight	Low

Step3: Cost Sensitive Learning from Pseudo Labeled Data

Source Selection Experiments

Toy Dataset

Method: SVM with linear kernel Data: 200 data points per class for each of two sources S_1 , S_2 , and target T

We obtain the following results:

 $\begin{aligned} \varsigma_{\mathcal{H}}^{\ell}(\widehat{P}_{\mathrm{T}}, \widehat{P}_{\mathrm{S}_{1}}) &= 0.27, \quad \varsigma_{\mathcal{H}}^{\ell}(\widehat{P}_{\mathrm{T}}, \widehat{P}_{\mathrm{S}_{2}}) = 0.49\\ d_{\mathcal{H}}(\widehat{P}_{\mathrm{T}}, \widehat{P}_{\mathrm{S}_{1}}) &= 0.69, \quad d_{\mathcal{H}}(\widehat{P}_{\mathrm{T}}, \widehat{P}_{\mathrm{S}_{2}}) = 0.49. \end{aligned}$

 \rightarrow S-disc regards S₁ is better while $d_{\mathcal{H}}$ regards S₂ is better.

 $\operatorname{S-disc}$ is the better discrepancy to measure the quality of sources.

Benchmark Dataset

Proposed Measure: Source-guided Discrepancy (S-disc)

Explicitly use the best hypothesis $h_{\rm S}^*$ in the source domain:

 $\varsigma_{\mathcal{H}}^{\ell}(P_T, P_S) = \sup_{h \in \mathcal{H}} \left| R_T^{\ell}(h, h_S^*) - R_S^{\ell}(h, h_S^*) \right|$

- 1. Estimation of h_S^* requires only labeled data in the source domain. \rightarrow Can be estimated from samples.
- 2. No need to consider a pair of hypotheses.
- \rightarrow Computationally efficient.
- 3. The following inequality holds:
- $\left|R_T^{\ell}(h, h_S^*) R_S^{\ell}(h, h_S^*)\right| \le \varsigma_{\mathcal{H}}^{\ell}(P_T, P_S) \le \operatorname{disc}_{\mathcal{H}}^{\ell}(P_T, P_S)$
- \rightarrow Can give a tighter bound than $\mathcal{X}\text{-}\mathrm{disc}$.

Method : Logistic Regression Target : MNIST

Sources: Five Clean MNIST-M and Five Noisy MNIST-M Task: Classify between even and odd digits

Score = # of clean sources from top 5 sources chosen by each discrepancy measure

1. *S*-disc achieved a better performance as the number of examples increases. 2. $d_{\mathcal{H}}$ cannot distinguish between noisy and clean sources.

[1] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from different domains. Machine Learning, 79(1-2):151-175, 2010

[2] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In COLT, 2009.
[3] Mohri, M., and Medina, A. M. 2012. New analysis and algorithm for learning with drifting distributions. In ALT, 124–138.