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Unsupervised Domain Adaptation
In unsupervised domain adaptation, we consider the following setting.

• Distributions in the source and target domains are related but not the same. 

• Labeled data in the source domain and unlabeled data in the target domain.

Ex. Natural language processing, speech recognition, computer vision 

[Mansour et al., 2009]

[Ben-David et al., 2010]

To select a good source, labels in the source domain might be useful. 

A computationally efficient proxy of :

Explicitly use the best hypothesis      in the source domain:  

1. Estimation of      requires only labeled data in the source domain.

→ Can be estimated from samples.

2. No need to consider a pair of hypotheses.

→ Computationally efficient.

3. The following inequality holds:

→ Can give a tighter bound than            .           
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Theorem 1 If   obeys the triangular inequality, 

Regret arising from using 

instead of 

Gap of the best classifiers: 

Uncontrollable in this problem

Method: SVM with linear kernel

Data: 200 data points per class for each of

two sources    ,     , and target

We obtain the following results:

Method：Logistic Regression

Target：MNIST

Sources: Five Clean MNIST-M and Five Noisy MNIST-M

Task: Classify between even and odd digits

Score = # of clean sources from top 5 sources       

chosen by each discrepancy measure

Theorem 2 For a symmetric hypothesis space (  implies ) , 

This theorem suggests a three-step algorithm for S-disc estimation described as follows:

Step1: Source Learning

Step2: Pseudo Labeling

Step3: Cost Sensitive Learning from Pseudo Labeled Data 

Target domain 

Learn a classifier and obtain   ．

: Positive

: Negative

: Unlabeled

The difference between expected losses of the two domains for the worst pair of hypotheses:

Estimation error in

the source domain 

Might degrade accuracy

is the better discrepancy to measure the quality of sources.

1. achieved a better performance as the number of examples increases.

2. cannot distinguish between noisy and clean sources. 

→  The Lower  , the better generalization. 

Proposed Measure:
Source-guided Discrepancy (S-disc)

Source domain 

S-disc estimation can be reduced to a cost-sensitive classification for the 0-1 loss:

Learn a classifier      using labeled source data

Obtain pseudo labeled data

Source domain 1 

Target domain

（Unlabeled）

: Positive

: Negative

: Unlabeled

Source domain 2 

How can we utilize labeled data in the source domain?

Proposed a new discrepancy measure for unsupervised domain adaptation.

• Exploits all available information including labels in the source domain 

unlike existing discrepancy measures.

• Has a tighter generalization error bound and is computationally efficient.
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・The computation of             is intractable.

Can be expressed as the binary classification loss.

→             regards     is better while       regards     is better.  
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