Learning Only from Relevant Keywords and Unlabeled Documents

Figure 1: Example where a target class is "Action movie".

Common approach: Liu+ (2004); Druck+ (2008); Settle (2011); Jin+, (2017)

- 1. Use keywords to pseudo-label the unlabeled data
- 2. Learn a classifier from pseudo-labeled data

But pseudo-labeling can be unreliable!

- True positive can be pseudo-labeled as negative (and vice versa)
- Theoretical understanding of this problem is limited

Proposed: maximize AUC then find a threshold.

- AUC can be maximized even pseudo-labeling is imperfect
- Theoretically guaranteed with estimation error bound
- Also allows flexible choices of model and optimization algorithm

AUC maximization from pseudo-labeled data

Given: Two sets of documents **Pseudo**-positive:

 $\{\boldsymbol{x}_{i}^{\mathrm{CP}}\}_{i=1}^{n_{\mathrm{CP}}} \stackrel{\mathrm{i.i.d.}}{\sim} \theta \mathrm{pos}\left(\boldsymbol{x}\right) + (1-\theta) \mathrm{neg}(\boldsymbol{x}) \quad \underset{n \in g(\boldsymbol{x}): \ p(\boldsymbol{x}|y=-1)}{\operatorname{neg}(\boldsymbol{x}): \ p(\boldsymbol{x}|y=-1)}$

Pseudo-negative:

1.5

1.0

([№]) 0.5

-0.5

RIKEN

Threshold selection

A reasonable threshold $\beta_{BEP} \in \mathbb{R}$ can be obtained if positive data ratio π of unlabeled documents is known.

 $\pi \approx \frac{1}{n} \sum \operatorname{sign}(g(\boldsymbol{x}) - \beta_{\text{BEP}})$ $x \in D$

 η : Training data size D: Training documents

Known as precision-recall breakeven point (BEP). Kato+ (2019)

We can re-adjust a bad threshold caused by pseudo-labeling using $\beta_{\rm BEP}$. Results of a heuristic method are provided in our paper.

Experiments

Methods:

 $pos(\boldsymbol{x}): p(\boldsymbol{x}|y=+1)$

 $\theta, \theta' \in [0, 1] \text{ and } \theta > \theta'$

 $\mathbf{x} \sim \mathbf{pos}(\mathbf{x})^{\mathsf{L}}$

 $\boldsymbol{x} \sim \operatorname{neg}(\boldsymbol{x})$

1, z < 0

Zero-one loss $\begin{cases} 0, z > 0 \\ \frac{1}{2}, z = 0 \end{cases}$

Proposed framework:

Sigmoid: AUC maximization using **symmetric** sigmoid loss Logistic: AUC maximization using non-symmetric logistic loss **Text feature baselines:**

 $\ell_{\text{sigmoid}}^{\text{sym}}(z) = \frac{1}{1 + \exp(z)}$ $\ell_{\log}(z) = \log(1 + \exp(-z))$

Maxent: maximum entropy classifier

NB: naïve bayes

PU-NB: variant of the NB that performs classification using positive and unlabeled data **GloVe baselines:**

$$\{\boldsymbol{x}_{j}^{\mathrm{CN}}\}_{j=1}^{n_{\mathrm{CN}}} \stackrel{\mathrm{i.i.d.}}{\sim} \theta' \mathrm{pos}\left(\boldsymbol{x}
ight) + (1- heta') \mathrm{neg}(\boldsymbol{x})$$

Find: $g: \mathcal{X} \to \mathbb{R}$ that **minimizes** AUC risk

$$R_{\mathrm{AUC}}^{\ell_{0-1}}(g) = \mathbb{E}_{\mathrm{P}}[\mathbb{E}_{\mathrm{N}}[\ell_{0-1}(g(\boldsymbol{x}^{\mathrm{P}}) - g(\boldsymbol{x}^{\mathrm{N}}))]]$$

AUC risk is with respect to the clean data.

How to minimize the clean risk using pseudo-labeled data? Relationship between **pseudo-labeled** and **clean** risks:

For any loss
$$\ell : \mathbb{R} \to \mathbb{R}$$
, $\varphi^{\ell}(x, x') = \ell(g(x) - g(x')) + \ell(g(x') - g(x))$

$$\begin{split} R_{\text{AUC-Corr}}^{\ell}(g) &= (\theta - \theta') R_{\text{AUC}}^{\ell}(g) \\ \textbf{Pseudo-labeled risk} & \textbf{Clean risk} \\ & \left[\underbrace{ + \underbrace{\theta \theta'}_{\text{Excessive term}} [\mathbb{E}_{\text{P}}[\varphi^{\ell}(x^{\text{P}'}, x^{\text{P}})]]}_{\text{Excessive term}} + \underbrace{\frac{\theta \theta'}{2} \mathbb{E}_{\text{P}'}[\mathbb{E}_{\text{P}}[\varphi^{\ell}(x^{\text{P}'}, x^{\text{P}})]]}_{\text{Excessive term}} + \underbrace{\frac{(1 - \theta)(1 - \theta')}{2} \mathbb{E}_{\text{N}'}[\mathbb{E}_{\text{N}}[\varphi^{\ell}(x^{\text{N}'}, x^{\text{N}})]]}_{\text{Excessive term}} \\ \end{split}$$

Minimizing pseudo-labeled risk suffers from excessive terms.

Randomforest: random forest on average word vectors **KNN:** k-nearest neighbors on average word vectors

Zero-shot baselines:

GloveRanking: rank the score by average distance to relevant keywords **Voting:** majority vote by keywords

Does threshold adjustment help?

F1-score: without adjustment

F1-score: with adjustment

Methods	Subj	MPQA	AYI	20NG	Methods	Subj	MPQA	AYI	20NG
Maxent	63.4 (0.31)	50.1 (0.22)	42.5 (0.35)	47.4 (0.05)	Maxent	76.3 (0.24)	53.1 (0.20)	56.6 (0.36)	52.4 (0.25)
NB	73.7 (0.23)	53.8 (0.22)	65.8 (0.42)	23.7 (0.25)	NB	76.3 (0.16)	54.3 (0.28)	61.6 (0.38)	58.4 (0.22)
RandomForest	33.3 (0.00)	43.5 (0.20)	35.0 (0.20)	47.2 (0.00)	RandomForest	75.1 (0.27)	62.4 (0.45)	64.5 (0.53)	89.6 (0.28)
KNN	43.6 (0.23)	51.0 (0.16)	61.6 (0.43)	84.3 (0.26)	KNN	63.6 (0.32)	23.8 (0.00)	65.5 (0.52)	86.7 (0.59)

Threshold adjustment can improve the performance in most cases.

F1-score: threshold selection method with different $\hat{\pi}$:

							$\pi_{Subj}=0.50$			
Dataset	Methods	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	
	Sigmoid	43.3 (0.17)	51.2 (0.24)	63.9 (0.34)	72.5 (0.27)	77.9 (0.37)	80.1 (0.38)	78.7 (0.32)	73.7 (0.29)	
Subi	Maxent	37.1 (0.15)	41.9 (0.18)	52.5 (0.27)	62.1 (0.19)	70.6 (0.27)	76.3 (0.24)	74.5 (0.25)	64.1 (0.25)	
Subj	RandomForest	42.1 (0.22)	49.9 (0.15)	61.6 (0.22)	69.1 (0.26)	73.5 (0.29)	75.1 (0.27)	73.5 (0.17)	69.0 (0.21)	
	GloVe Ranking	43.1 (0.24)	50.5 (0.25)	61.9 (0.25)	69.3 (0.27)	73.6 (0.18)	74.5 (0.13)	72.8 (0.18)	68.0 (0.16)	
	Sigmoid	79.9 (0.23)	91.2 (0.18)	78.4 (0.20)	68.2 (0.15)	60.0 (0.14)	52.7 (0.13)	45.3 (0.15)	37.8 (0.13)	
2010	Maxent	51.5 (0.19)	52.3 (0.24)	51.5 (0.21)	49.5 (0.16)	46.6 (0.15)	43.0 (0.16)	38.1 (0.14)	32.9 (0.15)	
2014G	RandomForest	79.4 (0.33)	89.8 (0.29)	78.5 (0.17)	68.2 (0.15)	59.8 (0.16)	52.6 (0.13)	45.4 (0.12)	37.7 (0.16)	
	GloVe Ranking	79.2 (0.34)	90.7 (0.17)	78.2 (0.22)	67.9 (0.19)	59.9 (0.14)	52.3 (0.11)	45.0 (0.10)	37.6 (0.10)	
		π_{20}	DNG = 0	.11				5 US		

The closer π to π , the better F1-score.

Using symmetric loss: $\ell^{\text{sym}}(z) + \ell^{\text{sym}}(-z) = K$ K: constant Sigmoid Ramp Unhinged $R_{\text{AUC-Corr}}^{\ell_{\text{sym}}}(g) = (\theta - \theta') R_{\text{AUC}}^{\ell_{\text{sym}}}(g) + \frac{K(1 - \theta + \theta')}{2},$ **Pseudo-labeled risk Clean risk** Constant the minimizers of both risks are identical!

Charoenphakdee+ (2019)

Four evaluation metrics with adjusted threshold:

(Prec@100 and AUC do not need threshold)

Datasat	Evaluation	Proposed framework		Text-feature baselines			GloVe-feature baselines		Zero-shot baselines		Oracle	
Dataset	Evaluation	Sigmoid	Logistic	PU-NB	NB	Maxent	RandomForest	KNN	GloVeRanking	Voting	O-Maxent	O-Sigmoid
	AUC	88.1 (0.35)	84.1 (0.30)	55.4 (0.13)	85.0 (0.18)	84.6 (0.20)	82.4 (0.27)	73.6 (0.29)	81.7 (0.19)	70.2 (0.24)	97.4 (0.06)	93.6 (0.11)
Subi	F_1	80.1 (0.38)	76.0 (0.32)	47.1 (0.20)	76.3 (0.16)	76.3 (0.24)	75.1 (0.27)	63.6 (0.32)	74.5 (0.13)	63.5 (0.18)	92.0 (0.13)	86.4 (0.14)
Subj	ACC	80.1 (0.38)	76.0 (0.32)	55.0 (0.13)	76.3 (0.16)	76.3 (0.24)	75.1 (0.27)	65.0 (0.28)	74.5 (0.13)	64.1 (0.18)	92.0 (0.13)	86.4 (0.14)
	Prec@100	96.3 (0.60)	95.1 (0.60)	0.9 (0.09)	95.9 (0.33)	94.7 (0.39)	93.2 (0.50)	91.5 (0.59)	95.2 (0.54)	85.8 (0.93)	99.3 (0.15)	97.8 (0.27)
	AUC	80.4 (0.44)	78.7 (0.37)	52.1 (0.27)	56.4 (0.31)	56.7 (0.23)	69.1 (0.55)	60.1 (0.23)	63.6 (0.26)	56.0 (0.12)	78.3 (0.25)	86.8 (0.18)
MPOA	F_1	71.7 (0.44)	69.8 (0.31)	46.7 (0.23)	54.3 (0.28)	53.1 (0.20)	62.4 (0.45)	23.8 (0.00)	57.5 (0.17)	23.8 (0.00)	69.8 (0.19)	77.9 (0.22)
WI QA	ACC	75.6 (0.39)	74.0 (0.27)	47.1 (0.24)	62.4 (0.28)	58.4 (0.17)	67.4 (0.39)	31.2 (0.00)	63.3 (0.17)	31.2 (0.00)	72.8 (0.20)	81.0 (0.19)
	Prec@100	81.5 (0.97)	77.5 (1.02)	10.8 (3.37)	69.5 (0.86)	63.8 (1.93)	76.9 (1.06)	78.7 (0.80)	50.6 (0.60)	74.7 (0.69)	94.8 (0.46)	90.5 (0.52)
	AUC	76.0 (0.41)	75.6 (0.43)	60.5 (0.39)	71.2 (0.41)	60.7 (0.46)	70.1 (0.55)	72.5 (0.39)	62.4 (0.53)	61.0 (0.33)	84.6 (0.32)	81.1 (0.40)
	F_1	69.3 (0.36)	68.8 (0.40)	58.9 (0.47)	61.6 (0.38)	56.6 (0.36)	64.5 (0.53)	65.5 (0.52)	58.7 (0.51)	33.5 (0.00)	76.8 (0.37)	73.0 (0.39)
	ACC	69.3 (0.36)	68.8 (0.40)	60.1 (0.41)	62.5 (0.35)	56.8 (0.36)	64.6 (0.53)	65.8 (0.44)	58.7 (0.51)	50.5 (0.00)	76.9 (0.37)	73.0 (0.39)
	Prec@100	87.5 (0.55)	87.5 (0.62)	74.5 (2.20)	85.1 (0.71)	70.2 (1.00)	77.2 (0.99)	82.5 (0.69)	72.4 (0.91)	79.2 (0.87)	95.6 (0.47)	90.1 (0.73)
	AUC	96.4 (0.12)	96.0 (0.15)	N/A	77.1 (0.21)	57.6 (0.32)	96.8 (0.16)	94.7 (0.16)	95.0 (0.17)	62.9 (0.22)	65.5 (0.46)	99.0 (0.05)
2010	\mathbf{F}_1	90.8 (0.20)	90.6 (0.21)	N/A	58.4 (0.22)	52.4 (0.25)	89.6 (0.28)	86.7 (0.59)	90.5 (0.18)	9.6 (0.00)	56.8 (0.29)	94.1 (0.14)
2014G	ACC	96.5 (0.08)	96.4 (0.08)	N/A	70.2 (0.31)	81.6 (0.11)	96.1 (0.10)	94.5 (0.35)	96.4 (0.07)	10.6 (0.00)	83.5 (0.11)	97.8 (0.05)
	Prec@100	99.5 (0.15)	99.1 (0.24)	N/A	0.4 (0.11)	17.6 (0.77)	99.5 (0.15)	97.6 (0.38)	97.5 (0.28)	85.2 (1.03)	32.0 (1.31)	99.9 (0.07)
									Fully-labeled			
References										data are given		
											- J	
[1] Liu, E	3., Li, X., Le	ee, W. S., a	and Yu, P. S	S. Text class	sification by	y labeling w	vords. In AAAI	, 2004.				

[2] Druck, G., Mann, G., and McCallum, A. Learning from labeled features using generalized expectation criteria. SIGIR, 2008. [3] Settle, B. Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances. EMNLP, 2011. [4] Jin, Y., Wanvarie, D., and Le, P. Combining lightly-supervised text classification models for accurate contextual advertising. IJCNLP, 2017. [5] Charoenphakdee, N., Lee, J., and Sugiyama, M. On symmetric losses for learning from corrupted labels. ICML, 2019. [6] Kato, K., Teshima, T., and Honda, J. Learning from positive and unlabeled data with a selection bias. ICLR, 2019.