On Symmetric Losses for Learning from Corrupted Labels

Introduction

Learning from corrupted labels is possible, but...

Lu+ 2019: We need to know proportions of clean positive data in corrupted labeled data to optimize accuracy.

Problem: Proportions are unidentifiable from samples (Scott+, 2013). **Q:** What can we learn without estimating proportions? van Rooyen+ 2015: Optimizing Balanced error rate (BER) is effective with symmetric losses (no experiments).

Menon+ 2015: Optimizing BER or Area under ROC curve (AUC) is effective with many losses (experiments with squared loss).

Ours: using symmetric loss is preferable for both BER & AUC optimization theoretically and experimentally!

Learning from Corrupted Labels

(Scott+, 2013, Menon+, 2015, Lu+, 2019)

Given: Two	sets of corrupted data
Positive:	$X_{\text{CP}} := \{ \boldsymbol{x}_i^{\text{CP}} \}_{i=1}^{n_{\text{CP}}} \overset{\text{i.i.d.}}{\sim} \pi \text{pos}\left(\boldsymbol{x} \right) + (1 - \pi) \operatorname{neg}(\boldsymbol{x})$
Negative:	$X_{\rm CN} := \{ \boldsymbol{x}_j^{\rm CN} \}_{j=1}^{n_{\rm CN}} \overset{\text{i.i.d.}}{\sim} \pi' \text{pos}\left(\boldsymbol{x}\right) + (1 - \pi') \operatorname{neg}(\boldsymbol{x})$

Find: $g: \mathbb{R}^d \to \mathbb{R}$ that minimizes AUC risk, i.e., bipartite ranking risk: $\mathbb{E}_{N}[\cdot]$: $R_{\mathrm{AUC}}^{\ell_{0-1}}(g) = \mathbb{E}_{\mathrm{P}}[\mathbb{E}_{\mathrm{N}}[\ell_{0-1}(g(\boldsymbol{x}^{\mathrm{P}}) - g(\boldsymbol{x}^{\mathrm{N}}))]]$

g outputs higher values for positive data than negative data Similar results hold for **BER** in this paper and thus omitted for brevity.

Jongyeong Lee^{1,2} Masashi Sugiyama^{2,1} Nontawat Charoenphakdee^{1,2} 1: The University of Tokyo 2: RIKEN AIP

expressed as **Corrupted risk** Clean risk

$R^{\ell}_{\mathrm{AUC-Corr}}(g) = ($ Corrupted risk	$\pi - \pi') R^\ell_{ m AUC}(g) + {f Clean risk}$	K	$\left(\frac{1}{1}\right)$	$\frac{-\pi}{2}$
	O IGUIT HSK			

 $pos(\boldsymbol{x}): p(\boldsymbol{x}|y=+1)$ $neg(\boldsymbol{x}): p(\boldsymbol{x}|y=-1)$ $\pi, \pi' \in [0, 1] \text{ and } \pi > \pi'$

Dataset	Task	Barrier	Unhinged	Sigmoid	Logistic	Hinge	Squared	Savage
spambase	BAC	82.3(0.8)	84.1 (0.6)	80.9(0.6)	72.6(0.7)	74.7(0.7)	69.5(0.7)	73.6(0.6)
	AUC	86.8(0.7)	90.9 (0.4)	86.0(0.4)	79.2(0.8)	77.7(0.7)	73.6(0.8)	80.1(0.8)
waveform	BAC	86.1 (0.4)	87.1 (0.6)	85.4(0.6)	75.8(0.7)	78.3(0.7)	69.2(0.6)	73.2(0.6)
	AUC	92.2 (0.4)	91.7 (0.6)	90.9 (0.6)	82.3(0.7)	79.8(0.9)	75.1(0.7)	80.1(0.6)
twonorm	BAC	96.2 (0.3)	96.7 (0.2)	95.4(0.4)	80.2(0.5)	82.8(0.9)	71.6(0.7)	75.9(0.6)
	AUC	99.1(0.1)	99.6 (0.0)	98.0(0.2)	88.3(0.5)	83.9(0.7)	77.3(0.7)	82.7(0.5)
mushroom	BAC	93.4 (0.8)	91.1(0.9)	94.4 (0.7)	81.3(0.5)	84.5(1.0)	72.2(0.6)	79.5(0.8)
	AUC	98.4 (0.2)	97.2(0.4)	97.8 (0.3)	89.0(0.5)	82.2(0.6)	77.8(0.6)	88.1(0.7)

