Classification with Rejection Based on Cost-sensitive Classification
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MNIST dataset
(Lecun, 1998)

Saying “l don’t know” can prevent misclassification.
How to learn a classifier to say “l don’t know” reasonably?

The well-known confidence-based approach typically requires estimating p(y|x).
Theoretical framework typically requires a loss to be convex. (Nietal., 2019)
Existing approaches have less loss choice than that of ordinary classification.

Contributions:

We propose a cost-sensitive approach to classification with rejection.

1. Itcan avoid estimating p(y|x).
2. Itis applicable to both binary and multiclass cases.
3. ltistheoretically justifiable for any classification-calibrated loss®*.

*Classification calibration is known to be a minimum loss requirement for ordinary classification.

Problem formulation

Given: rejection costc € (0,0.5), training input-output pairs:

n 1.1.d. Y ={1,2,...,K}: Label space
{332', Yisi=1 ~ p(:L‘, y) f: X - YU{®} : Classification rule
Goal: minimize 0-1-c risk:
Rfoie(f) = E Lorc(f(x), )]
(may)Np(may)
c if f(x) = ® Rejection
14 c ’ —
01(f(@) ) lo1(f(x),y) otherwise  Prediction
0-1loss

Rejection cost C is less than misclassification cost.

Directly minimizing the empirical 0-1-c risk is computationally infeasible.

(Bartlett and Wegkamp, 2008)

Bayes-optimal solution: Chow'’s rule

Knowing p(y|z) is sufficient to obtain optimal solution. (chow1970)

® max, p(y|x) <1 —c,
arg max, p(y|x) otherwise.
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Straightforward solution: estimating p(y|x) (confidence-based approach).
» More restrictive loss requirement than classification calibration.

(Reid and Williamson, 2010)

Well-known loss such as hinge, ramp, and sigmoid losses are
classification-calibrated but not capable of estimating p(y|x) .

Q: Can we have a framework that can use any
classification-calibrated loss?

N

THE UNIVERSITY OF TOKYO

rinzn

9 4

International conference on machine learning (ICML) 2021

Proposal: Cost-sensitive approach
Binary case

+1 ply=1z)>1—c
Chow’s rule for the binary case: f(z)={® c<ply=1lz)<1-c,
-1 ply=1lz) <c,
To mimic Chow’s rule, we only need to know:
1. ply=1|x) >1—c¢
2. ply=1lz) <c

Example: ¢ = 0.2
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Negative Rejection Positive

Binary cost-sensitive classification:

Binary classification where false negative penalty # false positive penalty.
Let false positive penalty be « € (0,1) and false negative penalty be 1 — «:

> Solving cost-sensitive classification can validate if P(y = 1|x) > o
» Loss requirement: classification calibration (scott, 2012)

Proposal: cost-sensitive approach to binary classification with rejection.

> Learn two cost-sensitive classifiers for &« = ¢ and « =1 —c.
» Predict if both classifiers predict the same class and reject otherwise.

Multiclass extension

Learn K one-vs-rest cost-sensitive classifiers with a =1 —c,
Can be learned at once by learning g: X — R"

E%éb(QB T,y) = ch(gy(m)) + (1 —c¢) ny;éy ¢( — 9y’ (33))

¢»: R — R : Classification-calibrated margin loss

: » Py =1z)  pregict i
| p(y _ 2‘33) Only one classifier returns positive
Reject if:
1. All classifiers predict negative, or
v p(y = K|x) 2. More than one classifier predicts positive
C
. . 4
Classification rule: ® maxy gy () < 0,
Jy, 1y’ s.t. !
f(m;g):<® Y,y sty Fy
gy(w)ag’y’ (33) > 0,
_ | arg max,, g,(x) [otherwise.
Excess risk bound
Main result: ploic( f) _ Rlotes < REGS™ (g) — REGS"

Excess cost-sensitive 0-1 risk

Excess 0-1-c risk is bounded by excess cost-sensitive 0-1 risk!
Excess risk bound of cost-sensitive 0-1 risk is well studied. (scott 2012, Steinwart, 2007)

Excess 0-1-c risk

K . . . .
rerlon cetor il b, o,i,%y ¥ : R — R: Invertible increasing function
R~cs™ (g) — R~es " < qub,l—c(Rl—c(gi) - Ry7), B
i=1 w(o) T 0
Excess cost-sensitive surrogate risk (please see our paper for more details.)

Excess 0-1-c risk is also bounded by excess cost-sensitive surrogate risk!

Connecting theory of cost-sensitive classification to
classification with rejection!

Comparison of approaches

Existing confidence-based approach

Rejection region

Rejection region spreads from the decision boundary.
Loss function choice is restrictive.

Proposed cost-sensitive approach

Rejection region

Rejection region is obtained by aggregating K-cost sensitive classifiers.
Loss requirement: classification calibration

Evaluation metric: Test empirical O-1-c risk with varying rejection cost
Baseline: Softmax cross-entropy loss with temperature scaling (SCE),
DEFER (Mozannar and Sontag, 2020), ANGLE (Zhang et al., 2017)

Setting: Clean-labeled classification (Clean), Noisy-labeled classification (Noisy),

Classification from positive and unlabeled data (PU)
Proposed methods

— SCE -«  DEFER - = ANGLE CS-hinge = (CS-sigmoid
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works well in classification from clean labels (Clean).

CS-sigmoid works well in classification from noisy labels (Noisy) and

classification from positive and unlabeled data (PU).
*sigmoid and hinge losses are classification-calibrated but not capable of estimating Pl Y :1:)
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