On the Calibration of Multiclass Classification with Rejection Chenri Ni¹ Nontawat Charoenphakdee^{1,2} Junya Honda^{1,2} Masashi Sugiyama^{2,1}

Introduction: Learning with rejection

https://me.me/i/the-right-way-to-answer-true-and-false-questions-18781463 Saying "I don't know" can prevent misclassification. **Related work:**

Approach	Binary	
Confidence-base	Bartlett+ (2008); Yuan+ (2010)	Ran
Classifier-rejector	Cortes+ (2015, 2016)	

Ramaswamy+ (2018) only focused on specific types of non-differentiable losses. **Contributions:**

- Calibration condition for surrogate losses in the classifier-rejector approach, which suggests the difficulty especially in the multiclass case
- Excess risk bounds and estimation error bounds to guarantee the one-vs-all (OVA) and cross-entropy (CE) losses in the confidence-based approach

Multiclass classification with	rejec
Given: Labeled data: $\{(x_i, y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} p(x, y)$ Rejection cost: $c \in (0, 0.5)$ Find: Classifier: $f(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} g_y(x) \in \mathcal{Y}$ Rejector: $r(x) \in \mathbb{R}$	Chow (197 $x \in \mathcal{X} \subseteq y \in \mathcal{Y} = g_i(x)$: decision(x)
Goal: Minimize $R_{0-1-c}(r, f) = \underset{p(\boldsymbol{x}, y)}{\mathbb{E}} [\mathcal{L}_{0-1-c}(r, f;$	[x, y)]
$\mathcal{L}_{0-1-c}(r, f; \boldsymbol{x}, \boldsymbol{y}) = \underbrace{\mathbb{I}[f(\boldsymbol{x}) \neq \boldsymbol{y}] \mathbb{I}[r(\boldsymbol{x}) > 0]}_{\text{misclassification loss}}$ $\mathcal{L}_{0-1-c}(r, f; \boldsymbol{x}, \boldsymbol{y}) \text{ is difficult to directly optimize}_{\text{Yuan+ (2010); Cortes+ (2015, 2)}}$ A computationally-efficient and theoretically justified s	rejectio
Calibration	
Calibration ensures that minimizing a surrogate loss will lea	ad to an
Optimal solution of classification with rejection	tion:
$f^*(\boldsymbol{x}) = \arg \max n_u(\boldsymbol{x})$ $n_u(\boldsymbol{x}) = n(u \boldsymbol{x})$	Chang
$r^{*}(\boldsymbol{x}) = \max_{\substack{y \in \mathcal{Y} \\ y \in \mathcal{Y}}} \eta_{y}(\boldsymbol{x}) - (1-c)$	c) Chow
$f(x) = \underset{y \in \mathcal{Y}}{\underset{y \in \mathcal{Y}}{\max}} \eta_y(x) - (1 - c)$ $f(x, f) \text{ is calibrated if } R_{0-1-c}(r, f) = R_{0-1-c}(r, f)$ $f(x) = r \text{ is classification-calibrated if } f(x) = r$ $f(x) = r \text{ is rejection-calibrated if } sign[r(x)]$	chow $r^*, f^*)$ $f^*(\boldsymbol{x})$ $= ext{sign}$

If (r, f) is calibrated, r must be rejection-calibrated. A minimizer of a surrogate loss should give a calibrated (r, f).

1: The University of Tokyo 2: RIKEN AIP

$$(\boldsymbol{x}) - r(\boldsymbol{x}) \Big) + c\psi \big(\beta r(\boldsymbol{x}) \big)$$

Electronic Journal of Statistics, 2018.

[5] H.G. Ramaswamy, A. Tewari, and S. Agarwal. Consistent algorithms for multiclass classification with an abstain option.

[6] M. Yuan, M.H. Wegkamp. Classification methods with reject option based on convex risk minimization. JMLR, 2010. [7] Y. Lecun, The MNIST database of handwritten digits. <u>http://yann.lecun.com/exdb/mnist/</u>, 1998.

			Conf	fider	ice-ba	ase	d	appi	roac	h		
					Bartle	tt+ (20	08);	Yuan+ ((2010); F	Ramaswai	my+ (2018	;)
		Reject	tor de	pends	solelv	on cl	as	sifier'	<mark>s</mark> conf	idence		
				•	• Cross-e	entropy	/ (C	E) loss:				
					$\mathcal{L}_{ ext{CE}}(j$	$f; oldsymbol{x}, y)$	=	$-g_y(\boldsymbol{x})$	$) + \log \Sigma$	$\sum_{y'\in\mathcal{Y}} \mathbf{e}_{\mathbf{\mathcal{Y}}}$	$\exp\left(g_{y'}(oldsymbol{x}$))
•					• One-ve	ersus-a	II (C	DVA) los	s:	<i>5</i> - 0	·	ŗ
$\mathcal{L}_{\mathrm{OVA}}(f;;$							$f(\boldsymbol{x}, y) = \phi(g_{y}(\boldsymbol{x})) + \sum_{u' \neq u} \phi(-g_{u'}(\boldsymbol{x}))$					
					• Rejector: $g(x) = [g_1(x), \dots, g_K(x)]^{ op}$							
			•		$r_f(\boldsymbol{x}) = \max_{\boldsymbol{u} \in \mathcal{V}} \Psi^{-1}(\boldsymbol{g}(\boldsymbol{x})) - (1-c)$							
					$\Psi^{-1} \colon \mathbb{R}^K \to [0,1]^K$ Inverse link function							
					π -1 (φ'($(-a_n)$	_ 1		$\exp(a)$	
					$\Psi_{y,{ m OVA}}^{-1}(g)$ See our pap	$({m g})=rac{1}{\phi'({m g})}$, where ${m for}$ is the component of the	$\frac{\varphi}{(-g_y)}$	(g_y) $(g_y) + \phi'(g_y)$ (g_y) (g_y) (g_y)	$\Psi_{y,\mathrm{CE}}^{-1}$	$\mathbf{g}(oldsymbol{g}) = rac{1}{\sum_y}$ Softmax fun	$\frac{\exp(g_y)}{f \in \mathcal{Y}} \exp(g_{y'})$ ction	
Ve pr	ovi	de exc	ess ris	k bour	nds to g	uarar	nte	e OVA	and Cl	E losses	•	
Exces	s r	isk:										
	4	ΔR_{0-1-}	$_{c}(r_{f},f)$	$) = R_{0}$	$1-c(r_f, f$	r) —	j	inf	R_{0-1-c}	(r_f, f)		
			$\Lambda R_{c}(f)$	$) - R_{ab}$	(f)	J' inf	:me	$\frac{1}{R} \left(f' \right)$)			
		2	$\Delta n_{\ell}(J)$) = Ill	(J) - f':	measura	able)			
Exces	s ri	sk bou	ind of	OVA lo	DSS:			Loss N	Vame	$\phi(z)$	C	8
(2C	')-	$^{s}\Delta R_{0}$	-1-c(r)	$(f,f)^s$	$\leq \Delta R$	COVA	(f)	Expone	ential	$\exp(1 + \exp(-z))$	$(-z)) = \frac{1}{2}$	$\frac{2}{2}$
Extensio	on o	f the res	ult by <mark>Yu</mark> a	n+ (2010)	to the mu	Ilticlass	case	e. Squa	red	$(1-z)^2$	$\frac{1}{2}$	2
Exces	ss r	isk bo	und of	CE los	S:			Squared	Hinge	$(1-z)_{+}^{-}$	- 2	Ζ
	$\frac{1}{2}$	ΔR_0	-1-c(r)	$(f, f)^2$	$\leq \Delta I$	$R_{\rm CE}($	f)					
Needs	ے anal	ysis spec	ific to the	e multicla	ass case wh	nere pre	vio	us techni	ques can	not be ap	plied.	
Mi	inir	nizers	of OV	A and	CE losse	s also) m	ninimiz	e the	0-1-c lo	SS.	
				See	our paper fo	or estima	atior	n error bo	und using	Rademacl	ner complex	ity.
				E	Exper	ime	n	ts				
lassifie	er-r	ejector	MPC+l	og (MPC	c with log	istic los	ss),	APC+lo	g (APC \	with logi	stic loss)	
onfide	ence	e-based	: OVA+h	nin by <mark>R</mark> a	amaswamy	y+ (201	8),	OVA+lo	g (OVA v	with logi	stic loss),	CE
0.225	erro	vehicle		-		atimage			0 225	letter		
0.200	— MPC — OVA — CE	C+log A+log	1	0.12	OVA+log CE		1		0.200 0 0.175 0	IPC+log VA+log E		
0.175 	— OVA	A+hin			OVA+hin				0.175 O	VA+hin		
0.125 0.100				0.00					9 0.125 0.100	1/		
0.075				0.04	4				0.075			
0.025	0.1	0.2	0.3 0.	4	0.1	0.2 0.	3	0.4	0.025	1 0.2	0.3 0.4	
ccura	cy c	of non-	rejecte	d data:	"- (-)" ind	dicates	s al	l data v	vere rej	ected.		
dataset	C O O O	APC+log	MPC+log	OVA+log	CE							
vehicle	0.05	- (-) 98.4 (1.9)	96.6 (2.3) 92.4 (3.0)	100 (0.0) 97.9 (0.7)	100 (0.0) 97.4 (0.1)	dataset	<i>c</i>	APC+log	MPC+log	OVA+log	CE	
	0.4	89.1 (2.9)	85.3 (4.2)	90.2 (1.6)	91.7 (0.9)	covtype	0.05	7 9.5 (2.1) 74.0 (1.8)	79.8 (1.7) 73.8 (1.0)	82.1 (2.7) 74.9 (1.4)	82.0 (3.2) 77.1 (0.3)	
satimage	0.05	99.1 (0.2) 95.0 (1.0)	97.2 (1.4) 92.6 (1.2)	98.7 (0.1) 96.2 (0.2)	98.3 (0.1) 95.7 (0.1)		0.4	69.8 (1.3)	64.9 (3.4)	68.7 (1.1)	69.4 (1.8)	
	0.4	91.5 (0.7)	89.0 (1.1)	92.2 (0.3)	91.8 (0.2)	letter	0.05	99.8 (0.1) 97.9 (0.3)	98.6 (0.2) 96.9 (0.5)	99.6 (0.2) 98.3 (0.2)	99 8 (0.0) 98.4 (0.1)	
veast	0.05 0.2	- (-) - (-)	- (-) - (-)	- (-) - (-)	- (-) 80.6 (6.2)		0.4	95.2 (0.5)	94.6 (3.8)	94.6 (0.2)	94.9 (0.3)	
jeast	0.4	- (-)	- (-)	75.0 (3.9)	76.6 (1.7)							

