Positive-Unlabeled Classification under Class Prior Shift and Asymmetric Error

東京大学 Nontawat Charoenphakdee^{1,2} Masashi Sugiyama^{2,1} THE UNIVERSITY OF TOKYO 1: The University of Tokyo 2: RIKEN ΔIP 1: The University of Tokyo 2: RIKEN AIP

Summary

Class prior shift heavily degrades the performance of positive-unlabeled classification (PU classification).

We propose **two frameworks** for solving this problem:

Risk minimization framework

Density ratio framework

We prove the equivalence of class prior shift and asymmetric error problems in PU classification.

Risk minimization approach

Risk: $R_{\text{Shift}}^{\ell_{0-1}}(g) = \pi_{\text{te}} \mathbb{E}_{P} \left[\ell_{0-1}(g(\boldsymbol{x})) \right] + (1 - \pi_{\text{te}}) \mathbb{E}_{N} \left[\ell_{0-1}(-g(\boldsymbol{x})) \right]$

Using the following identity: $\mathbb{E}_{u}[\cdot] = \pi_{tr} \mathbb{E}_{P}[\cdot] + (1 - \pi_{tr})\mathbb{E}_{N}[\cdot]$

We can equivalently express the risk as

 $R_{\text{Shift}}^{\ell_{0-1}}(g) = \mathbb{E}_{P}\left[\pi_{\text{te}}\ell_{0-1}(g(\boldsymbol{x})) - \frac{\pi_{\text{tr}}(1-\pi_{\text{te}})}{1-\pi_{\text{tr}}}\ell_{0-1}(-g(\boldsymbol{x}))\right] + \frac{1-\pi_{\text{te}}}{1-\pi_{\text{tr}}}\mathbb{E}_{u}\left[\ell_{0-1}(-g(\boldsymbol{x}))\right]$

Coincides with the existing method (du Plessis+, 2015) when $\pi_{tr} = \pi_{te}$.

Our methods are applicable for both problems!

Class prior shift

Positive-negative ratio in **training** and **test** data are different.

Practical examples: learn a classifier for a specific user from the internet and many users' information.

Minimize empirical risk with surrogate loss (Bartlett+, 2006).

(regularization can also be added.)

Bayes-optimal classifier: $unl(x) = \pi_{tr}pos(x) + (1 - \pi_{tr})neg(x)$ $f_{\text{Bayes}}^*(\boldsymbol{x}) = \text{sign}\left[p(y=+1|\boldsymbol{x}) - \frac{1}{2}\right]$ can be equivalently expressed as $f_{\text{Bayes}}^*(\boldsymbol{x}) = \text{sign} \left[\pi_{\text{tr}} \frac{\text{pos}(\boldsymbol{x})}{\text{unl}(\boldsymbol{x})} - \frac{\pi_{\text{tr}}(1 - \pi_{\text{te}})}{\pi_{\text{te}} + \pi_{\text{tr}} - 2\pi_{\text{tr}}\pi_{\text{te}}} \right]$ **Density ratio!** Another formulation: $f_{\text{Bayes}}^*(\boldsymbol{x}) = \text{sign}\left[\frac{\pi_{\text{te}} + \pi_{\text{tr}} - 2\pi_{\text{tr}}\pi_{\text{te}}}{(1 - \pi_{\text{te}})} - \frac{\text{unl}(\boldsymbol{x})}{\text{pos}(\boldsymbol{x})}\right]$ **Q: Which formulation is preferable?** In general, density ratio is **unbounded**.

In PU classification, density ratio $\frac{pos(x)}{unl(x)}$ is bounded. $0 \le \frac{pos(\boldsymbol{x})}{unl(\boldsymbol{x})} \le \frac{1}{\pi_{tr}}$ Lower and upper bounded $(\boldsymbol{\cdot})$

 $\pi: p(y=1)$ **Unlabeled** $X_{\mathrm{U}} := \{ \boldsymbol{x}_{j}^{\mathrm{U}} \}_{j=1}^{n_{\mathrm{U}}} \overset{\mathrm{i.i.d.}}{\sim} \pi_{\mathrm{tr}} \mathrm{pos}\left(\boldsymbol{x} \right) + (1 - \pi_{\mathrm{tr}}) \mathrm{neg}(\boldsymbol{x})$ $pos(\boldsymbol{x}): p(\boldsymbol{x}|y=1)$ $neg(\boldsymbol{x}): p(\boldsymbol{x}|y=-1)$ $\mathbb{E}_{ ext{P}}[\cdot]: \mathop{\mathbb{E}}\limits_{oldsymbol{x} \sim ext{pos}(oldsymbol{x})} [\cdot]$ $\mathbb{E}_{\mathrm{N}}[\cdot]: \mathbb{E}$ $\boldsymbol{x} \sim \overline{\operatorname{neg}}(\boldsymbol{x})$

Class prior shift classification risk:

Positive $X_{\mathrm{P}} := \{ \boldsymbol{x}_{i}^{\mathrm{P}} \}_{i=1}^{n_{\mathrm{P}}} \stackrel{\mathrm{i.i.d.}}{\sim} \operatorname{pos}(\boldsymbol{x})$

Given: Two sets of data

Goal: Minimize either

 $R_{\text{Shift}}^{\ell_{0-1}}(g) = \pi_{\text{te}} \mathbb{E}_{P} \left[\ell_{0-1}(g(\boldsymbol{x})) \right] + (1 - \pi_{\text{te}}) \mathbb{E}_{N} \left[\ell_{0-1}(-g(\boldsymbol{x})) \right], \text{ or }$ **Asymmetric error classification risk:**

Class prior

 $R_{\text{Asym}}^{\ell}(g) = (1 - \alpha) \pi_{\text{tr}} \mathbb{E}_{\text{P}} \left[\ell(g(\boldsymbol{x})) \right] + \alpha (1 - \pi_{\text{tr}}) \mathbb{E}_{\text{N}} \left[\ell(-g(\boldsymbol{x})) \right]$ $\alpha \in (0,1)$: false negative error

Existing PU classification work: no class prior shift, no

asymmetric error (du Plessis+, 2015, Kiryo+, 2017).

Existing class prior shift / asymmetric error work: require positive-negative data (Saerens, 2002, Scott+, 2012, du Plessis+, 2012).

Equivalence of class prior shift and

Unbounded from above

Naïve approach: estimate $\widehat{pos}(x)$ and $\widehat{unl}(x)$ separately then calculate $\frac{\widehat{pos}(x)}{\widehat{unl}(x)}$. **Division operation amplifies the estimation error!**

More effective direct approach:

unconstrained Least-squares Important Fitting (uLSIF) (Kanamori+, 2012).

Experiments $\pi_{tr} = 0.7, \pi_{te} = 0.3$

Datasets: banana, ijcnn1, MNIST, susy, cod-rna, magic

Methods:

Density ratio ($\frac{p}{u}$ uLSIF, $\frac{u}{n}$ uLSIF)

Linear-in input model: Double hinge (DH-Lin) and squared (Sq-Lin) losses. Kernel model (Ker): Double hinge (DH-Ker) and squared (Sq-Ker) losses.

Parameter selection: (regularization, kernel width) 5-fold cross-validation.

	Dataset	π^{g}	$\frac{u}{n}$ uLSIF	^{<i>p</i>} / _{<i>u</i>} LSIF	DH-Lin	DH-Ker	Sq-Lin	Sq-Ker	
Г	banana		83.0(1.0)	$\ddot{86.4} (0.5)$	70.2(0.5)	78.3(1.0)	70.0(0.0)	83.4(0.4)	1
	ijcnn1		70.8(0.6)	$74.2 \ (0.7)$	70.0(0.1)	69.8(0.2)	71.5(0.3)	69.2(0.5)	Correct test
	MNIST	π'	79.3(0.5)	81.7 (0.5)	74.0(1.1)	82.4(1.0)	52.3(1.4)	83.4 (0.9)	Correct lest
	susy	0.3	74.3(0.5)	76.0(0.3)	72.7(0.6)	70.0(0.0)	75.5(1.4)	74.7(0.7)	prior is given
	cod-rna		82.1(1.0)	82.8(0.8)	87.3(0.7)	77.3(0.8)	85.2(1.1)	80.2(1.0)	
	magic		71.5(0.7)	75.8(0.6)	72.7(1.1)	70.8(0.4)	75.0(1.0)	72.9(0.7)	
	banana		84.7(1.1)	88.7(0.7)	54.9(1.4)	81.7(1.6)	53.6(1.2)	83.8(1.3)	1
	ijcnn1		64.9(1.4)	66.6(1.0)	60.4(1.4)	51.6(3.0)	62.2(1.2)	48.2(2.8)	Wrong test
	MNIST	0.5	81.9(0.4)	84.1(0.6)	72.5(1.0)	82.5(0.7)	52.9(1.1)	81.9(0.9)	
	susy		75.9(1.1)	77.0 (0.6)	67.5(1.4)	75.5(0.6)	71.6(1.0)	72.8(1.1)	prior is given
	cod-rna		85.3 (0.7)	85.4(0.5)	86.2 (0.7)	80.1(1.1)	86.5 (0.9)	81.2(1.2)	
	magic		67.6(0.8)	73.6 (0.9)	72.6(0.7)	62.4(1.9)	71.8(0.7)	68.9(0.8)	
	banana		80.6(1.3)	82.1(1.1)	31.8(0.9)	48.9(1.5)	30.0(0.0)	69.9(1.1)	
	ijcnn1		35.2(1.4)	42.4(0.9)	30.0(0.0)	30.0(0.0)	32.4(0.5)	30.9(0.4)	
	MNIST	π	79.9 (0.7)	72.6(0.6)	71.1(1.1)	64.8(1.1)	64.0(0.6)	74.2(1.0)	Traditional PU
	susy	0.7	35.6(3.1)	44.2(2.9)	30.0(0.0)	30.0(0.0)	42.0(1.5)	36.8(1.3)	
	cod-rna		77.7(2.2)	77.8(2.1)	79.6 (0.7)	67.8(0.8)	78.2(0.5)	68.3(1.0)	
	magic		51.6(0.3)	60.3(1.5)	56.2(2.7)	32.8(0.7)	58.7(1.4)	50.1(1.6)	

asymmetric error in PU classification

We can relate these problems based on the analysis of Bayes-optimal classifier!

Results reported in mean and std. error of accuracy of 10 trials. Dataset information and more experiments and can be found in the paper.

References

[1] Saerens, Marco, Patrice Latinne, and Christine Decaestecker. "Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure." Neural computation 14.1 (2002): 21-41.

[2] Scott, Clayton. "Calibrated asymmetric surrogate losses." *Electronic Journal of Statistics* 6 (2012): 958-992.

[3] Du Plessis, Marthinus Christoffel, and Masashi Sugiyama. "Semi-supervised learning of class balance under class-prior change by distribution matching." Neural Networks 50 (2014): 110-119.

[4] Du Plessis, Marthinus C., Gang Niu, and Masashi Sugiyama. "Analysis of learning from positive and unlabeled data." *NeurIPS*. 2014.

[5] Du Plessis, Marthinus, Gang Niu, and Masashi Sugiyama. "Convex formulation for learning from positive and unlabeled data." *ICML*. 2015.

[6] Kiryo, Ryuichi, et al. "Positive-unlabeled learning with non-negative risk estimator." NeurIPS. 2017.

[7] Bartlett, Peter L., Michael I. Jordan, and Jon D. McAuliffe. "Convexity, classification, and risk bounds." JASA 101.473 (2006): 138-156.

[8] Kanamori, Takafumi, Taiji Suzuki, and Masashi Sugiyama. "Statistical analysis of kernel-based least-squares density-ratio estimation." Machine Learning 86.3 (2012): 335-367.