On Symmetric Losses for Learning from Corrupted Labels

Nontawat Charoenphakdee^{1,2}, Jongyeong Lee^{1,2} and Masashi Sugiyama^{2,1}

The University of Tokyo¹

RIKEN Center for Advanced Intelligence Project (AIP)²

Supervised learning

Learn from input-output pairs

Data collection

Predict output of unseen input accurately

Prediction function

Features (Input) Labels (Output)

Machine learning

Such that

Learning from corrupted labels Data collection

Prediction function

Examples:

- Expert labelers (human error)
- Crowdsourcing (non-expert error)

Contents

• Background and related work

- The importance of symmetric losses
- Theoretical properties of symmetric losses
- Barrier hinge loss
- Experiments

Warmup: Binary classification

• Given: input-output pairs:

$$\{\boldsymbol{x}_i, y_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}, y)$$

• Goal: minimize expected error:

$$R^{\ell_{0-1}}(g) = \mathop{\mathbb{E}}_{(\boldsymbol{x},y) \sim p(\boldsymbol{x},y)} \left[\ell_{0-1}(yg(\boldsymbol{x}))\right]$$

No access to distribution: minimize **empirical error** (Vapnik, 1998):

$$\hat{R}^{\ell_{0-1}}(g) = \frac{1}{n} \sum_{i=1}^{n} \ell_{0-1}(y_i g(\boldsymbol{x}_i))$$

$$y \in \{-1, 1\}$$
: Label
 $g: \mathbb{R}^d \to \mathbb{R}$: Prediction function
 $x \in \mathbb{R}^d$: Feature vector
 $\ell: \mathbb{R} \to \mathbb{R}$: Margin loss function

5

Surrogate losses

Minimizing 0-1 loss directly is difficult.

• Discontinuous and not differentiable (Ben-david+, 2003, Feldman+, 2012)

In practice, we minimize a surrogate loss (Zhang, 2004, Bartlett+, 2006).

Learning from corrupted labels

(Scott+, 2013, Menon+, 2015, Lu+, 2019)

Given: Two sets of corrupted data:

Positive:
$$X_{CP} := \{x_i^{CP}\}_{i=1}^{n_{CP}} \stackrel{\text{i.i.d.}}{\sim} \pi \operatorname{pos}(x) + (1 - \pi) \operatorname{neg}(x)$$
Negative: $X_{CN} := \{x_i^{CN}\}_{i=1}^{n_{CN}} \stackrel{\text{i.i.d.}}{\sim} \pi' \operatorname{pos}(x) + (1 - \pi') \operatorname{neg}(x)$ Class priorsClass priorsClean: $\pi = 1, \pi' = 0$ Positive-unlabeled: $\pi = 1, \pi' < 1$ (du Plessis+, 2014)

This setting covers many weakly-supervised settings (Lu+, 2019).

Issue on class priors

Given: Two sets of corrupted data:

Positive: $X_{CP} := \{ x_i^{CP} \}_{i=1}^{n_{CP}} \stackrel{\text{i.i.d.}}{\sim} \pi \text{pos}(x) + (1 - \pi) \text{neg}(x)$ Negative: $X_{CN} := \{ x_i^{CN} \}_{i=1}^{n_{CN}} \stackrel{\text{i.i.d.}}{\sim} \pi' \text{pos}(x) + (1 - \pi') \text{neg}(x)$

Assumption: $\pi > \pi'$ **Problem**: π, π' are **unidentifiable** from samples (Scott+, 2013).

Related work:

Class priors are needed! (Lu+, 2019)

Classification error: $R^{\ell_{0-1}}(g) = \mathop{\mathbb{E}}_{(\boldsymbol{x},y) \sim p(\boldsymbol{x},y)} \left[\ell_{0-1}(yg(\boldsymbol{x}))\right]$

Class priors are not needed! (Menon+, 2015)

Balanced error rate (BER):

$$R_{\text{Bal}}^{\ell_{0-1}}(g) = \frac{1}{2} \mathbb{E}_{\mathrm{P}} \left[\ell_{0-1}(g(\boldsymbol{x}^{\mathrm{P}})) \right] + \frac{1}{2} \mathbb{E}_{\mathrm{N}} \left[\ell_{0-1}(-g(\boldsymbol{x}^{\mathrm{N}})) \right]$$

Area under the receiver operating characteristic curve (AUC) risk:

$$R_{\mathrm{AUC}}^{\ell_{0-1}}(g) = \mathbb{E}_{\mathrm{P}}[\mathbb{E}_{\mathrm{N}}[\ell_{0-1}(g(\boldsymbol{x}^{\mathrm{P}}) - g(\boldsymbol{x}^{\mathrm{N}}))]]$$

Related work: BER and AUC optimization

Menon+, 2015: we can treat *corrupted data as if they were clean*.The proof relies on a property of 0-1 loss.Squared loss was used in experiments.

van Rooyen+, 2015: symmetric losses are also useful for BER minimization (no experiments).

Ours: using symmetric loss is preferable for both BER and AUC theoretically and experimentally!

Contents

- Background and related work
- The importance of symmetric losses
- Theoretical properties of symmetric losses
- Barrier hinge loss
- Experiments

Symmetric losses $\ell(z) + \ell(-z) = \text{Constant}$

Applications:

Risk estimator simplification in weakly-supervised learning

(du Plessis+, 2014, Kiryo+, 2017, Lu+, 2018)

Robustness under symmetric noise (label flip with a fixed probability) (Ghosh+, 2015, van Rooyen+, 2015)

AUC maximization $f(\boldsymbol{x}, \boldsymbol{x}') = g(\boldsymbol{x}) - g(\boldsymbol{x}')$

Theorem 1. Let $\gamma^{\ell}(\boldsymbol{x}, \boldsymbol{x}') = \ell(f(\boldsymbol{x}', \boldsymbol{x})) + \ell(f(\boldsymbol{x}, \boldsymbol{x}'))$. Then $R^{\ell}_{\text{AUC-Corr}}(g)$ can be expressed as

$$R_{\text{AUC-Corr}}^{\ell}(g) = (\pi - \pi')R_{\text{AUC}}^{\ell}(g) + \underbrace{(\pi' - \pi\pi')\mathbb{E}_{+}[\mathbb{E}_{-}[\gamma^{\ell}(x_{+}, x_{-})]]}_{\text{Excessive term}}$$

$$+ \underbrace{\frac{\pi\pi'}{2}\mathbb{E}_{+'}[\mathbb{E}_{+}[\gamma^{\ell}(x_{+'}, x_{+})]] + \underbrace{\frac{(1 - \pi)(1 - \pi')}{2}\mathbb{E}_{-'}[\mathbb{E}_{-}[\gamma^{\ell}(x_{-'}, x_{-})]]}_{\text{Excessive term}}.$$
Symmetric losses: $\ell(z) + \ell(-z) = K$
When $\gamma^{\ell}(x, x') = K$ which holds for symmetric losses, we have

When $\gamma^{\ell}(\boldsymbol{x}, \boldsymbol{x}') = K$ which holds for symmetric losses, we have

 $R^{\ell}_{\text{AUC-Corr}}(g) = (\pi - \pi')R^{\ell}_{\text{AUC}}(g) + K\left(\frac{1 - \pi + \pi'}{2}\right).$

Excessive terms become constant!

Excessive terms can be safely ignored with symmetric losses 🕑

BER minimization

Excessive terms can be safely ignored with symmetric losses

Contents

- Background and related work
- The importance of symmetric losses
- Theoretical properties of symmetric losses
- Barrier hinge loss
- Experiments

Theoretical properties of symmetric losses

Nonnegative symmetric losses are **non-convex**.

• Theory of convex losses cannot be applied. (du Plessis+, 2014, Ghosh+, 2015)

We provide a better understanding of symmetric losses: 💽

- Necessary and sufficient condition for classification-calibration
- Excess risk bound in binary classification
- Inability to estimate class posterior probability
- A sufficient condition for AUC-consistency
 - Covers many symmetric losses, e.g., sigmoid, ramp.

Well-known symmetric losses, e.g., sigmoid, ramp are classification-calibrated and AUC-consistent!

Contents

- Background and related work
- The importance of symmetric losses
- Theoretical properties of symmetric losses
- Barrier hinge loss
- Experiments

Convex symmetric losses?

By sacrificing nonnegativity:

only unhinged loss is convex and symmetric (van Rooyen+, 2015).

This loss has been considered (although robustness was not discussed). (Devroye+, 1996, Schoelkopf+, 2002, Shawe-Taylor+, 2004, Sriperumbudur+, 2009, Reid+, 2011)

Barrier hinge loss

- s > 1 slope of the non-symmetric region.
- w > 0 width of symmetric region.

High penalty if misclassify or output is outside symmetric region.

Symmetricity of barrier hinge loss

Satisfies symmetric property in an interval.

If output range is restricted in a symmetric region: **unhinged**, **hinge**, **barrier** are equivalent.

Contents

- Background and related work
- The importance of symmetric losses
- Theoretical properties of symmetric losses
- Barrier hinge loss
- Experiments

22 Experiments: BER/AUC optimization from corrupted labels

To empirically answer the following questions:

- 1. Does the symmetric condition significantly help?
- 2. Do we need a loss to be symmetric everywhere?
- 3. Does the negative unboundedness degrade the practical performance?

We conducted the following experiments: Fix the models, vary the loss functions Losses: Barrier [s=200, w=50], Unhinged, Sigmoid, Logistic, Hinge, Squared, Savage Experiment 1:

MLPs on UCI/LIBSVM datasets.

Experiment 2:

CNNs on more difficult datasets (MNIST, CIFAR-10).

23 Experiments: BER/AUC optimization from corrupted labels

For UCI datasets:

Multilayered perceptrons (MLPs) with one hidden layer: [d-500-1] Activation function: Rectifier Linear Units (ReLU) (Nair+, 2010)

MNIST and CIFAR-10:

Convolutional neural networks (CNNs):

[d-Conv[18,5,1,0]-Max[2,2]-Conv[48,5,1,0]-Max[2,2]-800-400-1]

ReLU after fully connected layer follows by dropout layer (Srivastava+, 2010)

MNIST: Odd numbers vs Even numbers

CIFAR: One class vs Airplane (follows Ishida+, 2017)

Conv[18, 5, 1, 0]: 18 channels, 5 x 5 convolutions, stride 1, padding 0 Max[2,2]: max pooling with kernel size 2 and stride 2

Experiment 1: MLPs on UCI/LIBSVM datasets

Figure 4: Mean balanced accuracy (1-BER) and AUC score using multilayer perceptrons (rescaled to 0-100) with varying noise rates ($\pi = 1.0, \pi' = 0.0$), ($\pi = 0.8, \pi' = 0.3$), ($\pi = 0.7, \pi' = 0.4$), ($\pi = 0.65, \pi' = 0.45$). The experiments were conducted 20 times.

The higher the better.

Dataset information and more experiments and can be found in our paper.

Experiment 1: MLPs on UCI/LIBSVM datasets

Symmetric losses and barrier hinge loss are preferable!

Table 2. Mean balanced accuracy (BAC=1-BER) and AUC score using multilayer perceptrons (rescaled to 0-100), where $\pi = 0.65$ and $\pi' = 0.45$. Outperforming methods are highlighted in boldface using one-sided t-test with the significance level 5%. The experiments were conducted 20 times.

Task	Barrier	Unhinged	Sigmoid	Logistic	Hinge	Squared	Savage
BAC	82.3(0.8)	84.1 (0.6)	80.9(0.6)	72.6(0.7)	74.7(0.7)	69.5(0.7)	73.6(0.6)
AUC	86.8(0.7)	90.9 (0.4)	86.0(0.4)	79.2(0.8)	77.7(0.7)	73.6(0.8)	80.1(0.8)
BAC	86.1 (0.4)	87.1 (0.6)	85.4(0.6)	75.8(0.7)	78.3(0.7)	69.2(0.6)	73.2(0.6)
AUC	92.2 (0.4)	91.7 (0.6)	90.9 (0.6)	82.3(0.7)	79.8(0.9)	75.1(0.7)	80.1(0.6)
BAC	96.2 (0.3)	96.7 (0.2)	95.4(0.4)	80.2(0.5)	82.8(0.9)	71.6(0.7)	75.9(0.6)
AUC	99.1(0.1)	99.6 (0.0)	98.0(0.2)	88.3(0.5)	83.9(0.7)	77.3(0.7)	82.7(0.5)
BAC	93.4 (0.8)	91.1(0.9)	94.4 (0.7)	81.3(0.5)	84.5(1.0)	72.2(0.6)	79.5(0.8)
AUC	98.4 (0.2)	97.2(0.4)	97.8 (0.3)	89.0(0.5)	82.2(0.6)	77.8(0.6)	88.1(0.7)
	Task BAC AUC BAC AUC BAC AUC BAC AUC	TaskBarrierBAC82.3(0.8)AUC86.8(0.7)BAC86.1 (0.4)AUC92.2 (0.4)BAC96.2 (0.3)AUC99.1(0.1)BAC93.4 (0.8)AUC98.4 (0.2)	TaskBarrierUnhingedBAC82.3(0.8)84.1 (0.6)AUC86.8(0.7)90.9 (0.4)BAC86.1 (0.4)87.1 (0.6)AUC92.2 (0.4)91.7 (0.6)BAC96.2 (0.3)96.7 (0.2)AUC99.1(0.1)99.6 (0.0)BAC93.4 (0.8)91.1(0.9)AUC98.4 (0.2)97.2(0.4)	TaskBarrierUnhingedSigmoidBAC82.3(0.8)84.1 (0.6)80.9(0.6)AUC86.8(0.7)90.9 (0.4)86.0(0.4)BAC86.1 (0.4)87.1 (0.6)85.4(0.6)AUC92.2 (0.4)91.7 (0.6)90.9 (0.6)BAC96.2 (0.3)96.7 (0.2)95.4(0.4)AUC99.1(0.1)99.6 (0.0)98.0(0.2)BAC93.4 (0.8)91.1(0.9)94.4 (0.7)AUC98.4 (0.2)97.2(0.4)97.8 (0.3)	TaskBarrierUnhingedSigmoidLogisticBAC82.3(0.8)84.1 (0.6)80.9(0.6)72.6(0.7)AUC86.8(0.7)90.9 (0.4)86.0(0.4)79.2(0.8)BAC86.1 (0.4)87.1 (0.6)85.4(0.6)75.8(0.7)AUC92.2 (0.4)91.7 (0.6)90.9 (0.6)82.3(0.7)BAC96.2 (0.3)96.7 (0.2)95.4(0.4)80.2(0.5)AUC99.1(0.1)99.6 (0.0)98.0(0.2)88.3(0.5)BAC93.4 (0.8)91.1(0.9)94.4 (0.7)81.3(0.5)AUC98.4 (0.2)97.2(0.4)97.8 (0.3)89.0(0.5)	TaskBarrierUnhingedSigmoidLogisticHingeBAC82.3(0.8)84.1 (0.6)80.9(0.6)72.6(0.7)74.7(0.7)AUC86.8(0.7)90.9 (0.4)86.0(0.4)79.2(0.8)77.7(0.7)BAC86.1 (0.4)87.1 (0.6)85.4(0.6)75.8(0.7)78.3(0.7)AUC92.2 (0.4)91.7 (0.6)90.9 (0.6)82.3(0.7)79.8(0.9)BAC96.2 (0.3)96.7 (0.2)95.4(0.4)80.2(0.5)82.8(0.9)AUC99.1(0.1)99.6 (0.0)98.0(0.2)88.3(0.5)83.9(0.7)BAC93.4 (0.8)91.1(0.9)94.4 (0.7)81.3(0.5)84.5(1.0)AUC98.4 (0.2)97.2(0.4)97.8 (0.3)89.0(0.5)82.2(0.6)	TaskBarrierUnhingedSigmoidLogisticHingeSquaredBAC82.3(0.8)84.1 (0.6)80.9(0.6)72.6(0.7)74.7(0.7)69.5(0.7)AUC86.8(0.7)90.9 (0.4)86.0(0.4)79.2(0.8)77.7(0.7)73.6(0.8)BAC86.1 (0.4)87.1 (0.6)85.4(0.6)75.8(0.7)78.3(0.7)69.2(0.6)AUC92.2 (0.4)91.7 (0.6)90.9 (0.6)82.3(0.7)79.8(0.9)75.1(0.7)BAC96.2 (0.3)96.7 (0.2)95.4(0.4)80.2(0.5)82.8(0.9)71.6(0.7)AUC99.1(0.1)99.6 (0.0)98.0(0.2)88.3(0.5)83.9(0.7)77.3(0.7)BAC93.4 (0.8)91.1(0.9)94.4 (0.7)81.3(0.5)84.5(1.0)72.2(0.6)AUC98.4 (0.2)97.2(0.4)97.8 (0.3)89.0(0.5)82.2(0.6)77.8(0.6)

The higher the better.

Experiment 2: CNNs on MNIST/CIFAR-10

Figure 5: Mean balanced accuracy (1-BER) and AUC score using convolutional neural networks (rescaled to 0-100). (Top) the varying noise rates ranged from $(\pi = 1.0, \pi' = 0.0), (\pi = 0.8, \pi' = 0.3), (\pi = 0.7, \pi' = 0.4), (\pi = 0.65, \pi' = 0.45)$. (Bottom) the noise rate is $\pi = 0.65$ and $\pi' = 0.45$. The experiments were conducted 10 times.

Poster#135: 6:30-9:00PM

Conclusion

27

We showed that **symmetric loss is preferable under corrupted labels** for:

- Area under the receiver operating characteristic curve (AUC) maximization
- Balanced error rate (**BER**) minimization

We provided **general theoretical properties** for symmetric losses:

- Classification-calibration, excess risk bound, AUC-consistency
- Inability of estimating the class posterior probability

We proposed a **barrier hinge loss**:

- As a proof of concept of the importance of symmetric condition
- Symmetric only in an interval but benefits greatly from symmetric condition
- Significantly outperformed all losses in BER/AUC optimization using CNNs