Positive-Unlabeled Classification under Class Prior Shift and Asymmetric Error

Nontawat Charoenphakdee^{1,2} and Masashi Sugiyama^{2,1}

The University of Tokyo¹ RIKEN AIP²

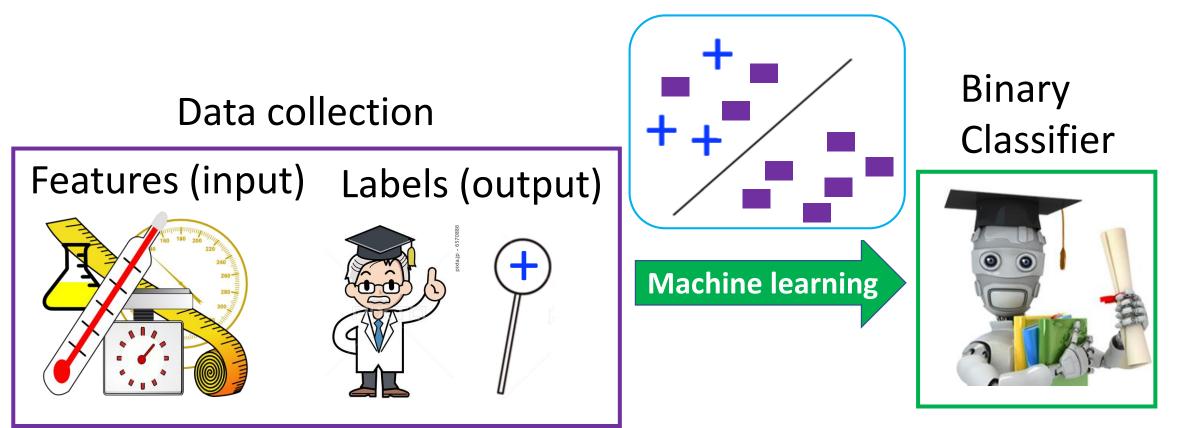
Supervised binary classification (PN classification)

Positive and **Negative** data are given.

Binary Data collection Classifier Features (input) Labels (output) **Machine learning**

Positive-unlabeled classification (PU classification)

Positive and **Unlabeled** data are given.



<u>https://t.pimg.jp/006/570/886/1/6570886.jpg</u> <u>https://www.kullabs.com/uploads/meauring-clip-art-at-clker-com-vector-clip-art-online-royalty-free-H2SJHF-clipart.png</u> <u>https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera.s3.amazonaws.com/topics/ml/large-icon.png</u>

Why PU classification?

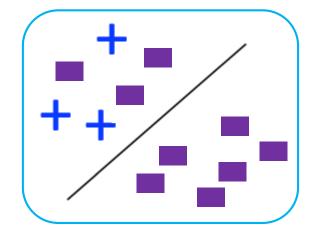
Unlabeled data are cheaper to obtain.

Sometimes, negative data are hard to describe.

In some real-world applications, collecting negative data is impossible.

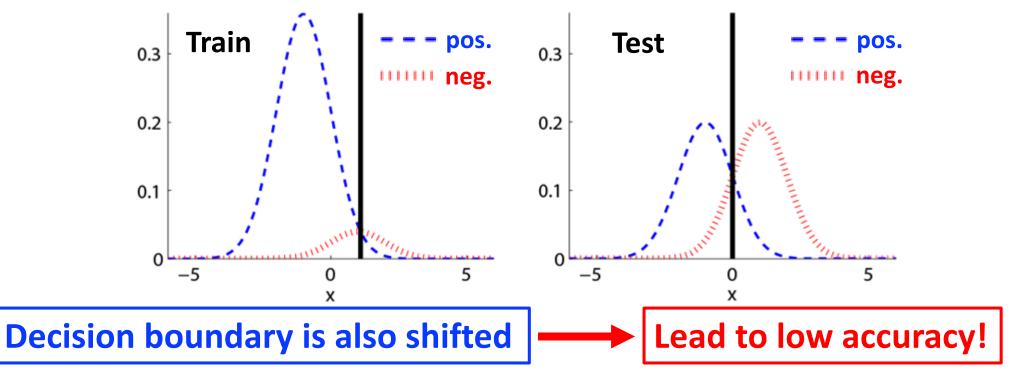
Applications:

- Bioinformatics (Yang+, 2012, Singh-Blom+ 2013, Ren+, 2015)
- Text classification (Li+, 2003)
- Time series classification (Nguyen+, 2011)
- Medical diagnosis (Zuluaga+, 2011)
- Remote-sensing classification (Li+, 2011)



Class prior shift

The ratio of **positive-negative** in the **training** and **test** data are different.



Examples:

- Collect unlabeled data from the internet.
- Collect unlabeled data from all users/patients/etc. for personalized application.

Class prior shift (cont.)

Existing **PU classification** work assumes class prior of **training** and **test** data are the same (du Plessis+, 2014 2015, Kiryo+, 2017).

Existing class prior shift work is not applicable since they require **positive-negative** data (Saerens, 2002, du Plessis+, 2012).

PU classification under class prior shift

Observed
$$\pi : p(y = 1)$$

 $pos(x) : p(x|y = 1)$
 $neg(x) : p(x|y = -1)$ Positive $X_P := \{x_i^P\}_{i=1}^{n_P} \stackrel{\text{i.i.d.}}{\sim} pos(x)$ $pos(x) : p(x|y = -1)$
 $neg(x) : p(x|y = -1)$ Unlabeled $X_U := \{x_j^U\}_{j=1}^{n_U} \stackrel{\text{i.i.d.}}{\sim} \pi_{tr} pos(x) + (1 - \pi_{tr}) neg(x)$ Unobserved $\pi_{tr} \neq \pi_{te} : \text{Class prior shift!}$ Test $X_{te} := \{x_k^{te}\}_{k=1}^{n_{te}} \stackrel{\text{i.i.d.}}{\sim} \pi_{te} pos(x) + (1 - \pi_{te}) neg(x)$

Q: Does class prior shift heavily degrade the performance?

Classifier may fail miserably under class prior shift...

Accuracy reported in mean and std. error of 10 trials with density ratio method.

Accuracy drops heavily!! Our method

Dataset	Accuracy (no shift)	Accuracy (shifted)	Accuracy (shifted)
banana	90.1 (0.6)	82.3 (0.5)	87.9 (0.3)
ijcnn1	72.9 (0.4)	37.8 (0.7)	71.7 (0.3)
MNIST	86.0 (0.4)	69.8 (0.7)	82.5 (0.6)
susy	79.5 (0.5)	57.5 (0.9)	75.9 (0.5)
cod-rna	87.4 (0.6)	78.5 (0.6)	84.7 (0.4)
magic	76.7 (0.5)	60.6 (1.4)	79.0 (0.5)

No shift: $\pi_{
m tr}=\pi_{
m te}=0.3$

Shift! $\pi_{\rm tr} = 0.7, \pi_{\rm te} = 0.3$

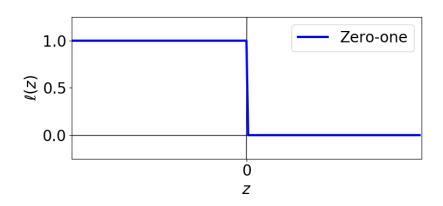
Problem setting

 $\begin{array}{ll} \pi: p(y=1) & \mathbb{E}_{\mathrm{P}}[\cdot]: & \mathbb{E}_{\mathbf{x}\sim\mathrm{pos}(\boldsymbol{x})} \\ \mathrm{pos}(\boldsymbol{x}): p(\boldsymbol{x}|y=1) & \mathbb{E}_{\mathrm{N}}[\cdot]: & \mathbb{E}_{\mathbf{x}\sim\mathrm{pos}(\boldsymbol{x})} \\ \mathrm{neg}(\boldsymbol{x}): p(\boldsymbol{x}|y=-1) & \mathbb{E}_{\mathrm{N}}[\cdot]: & \mathbb{E}_{\mathbf{x}\sim\mathrm{neg}(\boldsymbol{x})} \end{array}$

• Given: Two sets of data and test class prior $\pi_{
m te}$

Positive $X_{\mathrm{P}} := \{ \boldsymbol{x}_{i}^{\mathrm{P}} \}_{i=1}^{n_{\mathrm{P}}} \stackrel{\text{i.i.d.}}{\sim} \operatorname{pos}(\boldsymbol{x})$ Unlabeled $X_{\mathrm{U}} := \{ \boldsymbol{x}_{j}^{\mathrm{U}} \}_{j=1}^{n_{\mathrm{U}}} \stackrel{\text{i.i.d.}}{\sim} \pi_{\mathrm{tr}} \operatorname{pos}(\boldsymbol{x}) + (1 - \pi_{\mathrm{tr}}) \operatorname{neg}(\boldsymbol{x})$

• Goal: Find a prediction function g that minimizes $R_{\text{Shift}}^{\ell_{0-1}}(g) = \pi_{\text{te}} \mathbb{E}_{P} \left[\ell_{0-1}(g(\boldsymbol{x})) \right] + (1 - \pi_{\text{te}}) \mathbb{E}_{N} \left[\ell_{0-1}(-g(\boldsymbol{x})) \right]$



10

Proposed methods

We proposed two approaches for **PU classification** under **class prior shift**:

• Risk minimization approach:

Learn a classifier based on **empirical risk minimization** principle (Vapnik, 1998).

• Density ratio approach:

- 1. Estimate a **density ratio** of **positive** and **unlabeled** densities.
- 2. Use an appropriate threshold to classify.

Later, we will show that our methods are also applicable for **PU classification** with **asymmetric error**.

Risk minimization approach

Consider the following classification risk:

$$R_{\text{Shift}}^{\ell_{0-1}}(g) = \pi_{\text{te}} \mathbb{E}_{P} \left[\ell_{0-1}(g(\boldsymbol{x})) \right] + (1 - \pi_{\text{te}}) \mathbb{E}_{N} \left[\ell_{0-1}(-g(\boldsymbol{x})) \right]$$

With $\mathbb{E}_{u}[\cdot] = \pi_{tr} \mathbb{E}_{P}[\cdot] + (1 - \pi_{tr})\mathbb{E}_{N}[\cdot]$, we can rewrite $R_{Shift}^{\ell_{0-1}}(g)$ as

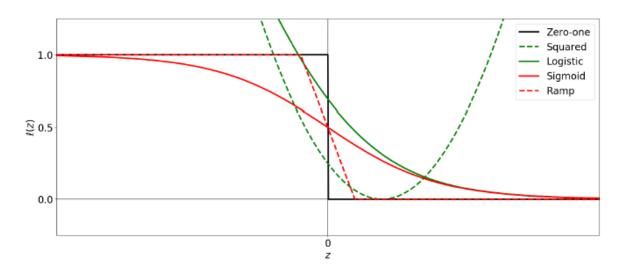
$$R_{\text{Shift}}^{\ell_{0-1}}(g) = \mathbb{E}_{P}\left[\pi_{\text{te}}\ell_{0-1}(g(\boldsymbol{x})) - \frac{\pi_{\text{tr}}(1-\pi_{\text{te}})}{1-\pi_{\text{tr}}}\ell_{0-1}(-g(\boldsymbol{x}))\right] + \frac{1-\pi_{\text{te}}}{1-\pi_{\text{tr}}}\mathbb{E}_{u}\left[\ell_{0-1}(-g(\boldsymbol{x}))\right]$$

Equivalent to existing methods (du Plessis+, 2015) if $\pi_{\mathrm{tr}}=\pi_{\mathrm{te}}$.

No access to distribution: we minimize empirical error (Vapnik, 1998):

$$\widehat{R}_{\text{PU-shift}}^{\ell_{0-1}}(g) = \frac{1}{n_{\text{P}}} \sum_{i=1}^{n_{\text{P}}} \left[\pi_{\text{te}} \ell_{0-1}(g(\boldsymbol{x}_{i}^{\text{p}})) - \frac{\pi_{\text{tr}}(1-\pi_{\text{te}})}{1-\pi_{\text{tr}}} \ell_{0-1}(-g(\boldsymbol{x}_{i}^{\text{p}})) \right] + \frac{1}{n_{\text{U}}} \frac{1-\pi_{\text{te}}}{1-\pi_{\text{tr}}} \sum_{j=1}^{n_{\text{U}}} \ell_{0-1}(-g(\boldsymbol{x}_{j}^{\text{p}}))$$

Surrogate losses for binary classification



Directly minimize 0-1 loss is difficult.

• NP-Hard, discontinuous, not differentiable (Ben-david+, 2003, Feldman+, 2012)

In practice, minimize a surrogate loss (regularization can also be added):

$$\widehat{R}_{\text{PU-shift}}^{\ell}(g) = \frac{1}{n_{\text{P}}} \sum_{i=1}^{n_{\text{P}}} \left[\pi_{\text{te}} \ell(g(\boldsymbol{x}_{i}^{\text{p}})) - \frac{\pi_{\text{tr}}(1-\pi_{\text{te}})}{1-\pi_{\text{tr}}} \ell(-g(\boldsymbol{x}_{i}^{\text{p}})) \right] + \frac{1}{n_{\text{U}}} \frac{1-\pi_{\text{te}}}{1-\pi_{\text{tr}}} \sum_{j=1}^{n_{\text{U}}} \ell(-g(\boldsymbol{x}_{j}^{\text{u}}))$$

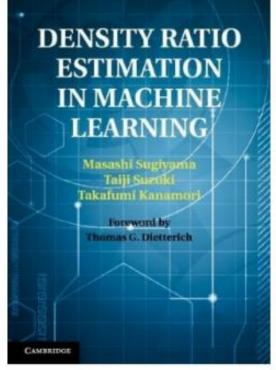
Density ratio estimation

Goal: Estimate the density ratio:

$$r(oldsymbol{x}) = rac{p_{ ext{nu}}(oldsymbol{x})}{p_{ ext{de}}(oldsymbol{x})}$$

from two sets of data

$$X_{\mathrm{nu}} := \{ \boldsymbol{x}_{i}^{\mathrm{nu}} \}_{i=1}^{n_{\mathrm{nu}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{nu}}(\boldsymbol{x})$$
$$X_{\mathrm{de}} := \{ \boldsymbol{x}_{j}^{\mathrm{de}} \}_{j=1}^{n_{\mathrm{de}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{de}}(\boldsymbol{x})$$



Please check this book to learn more about density ratio estimation (Sugiyama+, 2012)

Applications: outlier detection (Hido+, 2011), density ratio estimation (Sugiya change-point detection (Liu+, 2013), robot control (Hachiya+, 2009) event detection in images/movies/text (Yamanaka, 2011, Matsugu, 2011, Liu, 2012), etc.

Naïve approach: estimate $\hat{p}_{nu}(\boldsymbol{x})$, $\hat{p}_{de}(\boldsymbol{x})$ separately then perform division $\frac{\hat{p}_{nu}(\boldsymbol{x})}{\hat{p}_{de}(\boldsymbol{x})}$. Does not work well (estimation error is amplified from division operation).

Unconstrained least-squares important fitting (uLSIF)

Goal: Estimate the density ratio: $r(\boldsymbol{x}) = \frac{p_{\mathrm{nu}}(\boldsymbol{x})}{p_{\mathrm{de}}(\boldsymbol{x})}$

How: estimate \widehat{r} by minimizing squared loss objective:

$$\mathrm{SQ}(\widehat{r}) = \int \left(\widehat{r}(\boldsymbol{x}) - r(\boldsymbol{x})\right)^2 p_{\mathrm{de}}(\boldsymbol{x}) d\boldsymbol{x}$$

Squared loss decomposition:

$$SQ(\hat{r}) = \int \left(\hat{r}(\boldsymbol{x})\right)^2 p_{de}(\boldsymbol{x}) d\boldsymbol{x} - 2 \int \hat{r}(\boldsymbol{x}) p_{nu}(\boldsymbol{x}) d\boldsymbol{x} + Constant$$

Empirical minimization (constant can be safely ignored):

$$\widehat{\mathrm{SQ}}(\widehat{r}) = \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} \left(\widehat{r}(\boldsymbol{x}_{j}^{\mathrm{de}})\right)^{2} - \frac{2}{n_{\mathrm{nu}}} \sum_{i=1}^{n_{\mathrm{nu}}} \widehat{r}(\boldsymbol{x}_{i}^{\mathrm{nu}})$$

(Kanamori+, 2012)

Unconstrained least-squares important fitting (cont.)

Model: linear-in parameter model

$$\hat{r}(\boldsymbol{x}) = \sum_{b} \theta_{b} \phi_{b}(\boldsymbol{x}) = \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\boldsymbol{x})$$

Objective:

$$\min_{\boldsymbol{\theta}} \left[\frac{1}{2} \boldsymbol{\theta}^{\top} \widehat{\boldsymbol{H}} \boldsymbol{\theta} - \widehat{\boldsymbol{h}}^{\top} \boldsymbol{\theta} + \frac{\lambda}{2} \boldsymbol{\theta}^{\top} \boldsymbol{\theta} \right]$$

 $\phi_b(\boldsymbol{x})$: basis function (e.g., Gaussian kernel) $\widehat{\boldsymbol{H}} = \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} \phi(\boldsymbol{x}_j^{\mathrm{de}}) \phi(\boldsymbol{x}_j^{\mathrm{de}})^{\top}$ $\widehat{\boldsymbol{h}} = \frac{1}{n_{\mathrm{nu}}} \sum_{i=1}^{n_{\mathrm{nu}}} \phi(\boldsymbol{x}_i^{\mathrm{nu}})$

 λ : regularization parameter \boldsymbol{I} : identity matrix

Global solution can be computed analytically: $\hat{\theta} = (\hat{H} + \lambda I)^{-1} \hat{h}$ Parameter tuning (regularization, basis) can be done by cross-validation.

(Kanamori+, 2012)

Density ratio approach

$$pos(\boldsymbol{x}) : p(\boldsymbol{x}|\boldsymbol{y} = 1) neg(\boldsymbol{x}) : p(\boldsymbol{x}|\boldsymbol{y} = -1) unl(\boldsymbol{x}) = \pi_{tr}pos(\boldsymbol{x}) + (1 - \pi_{tr})neg(\boldsymbol{x})$$

Consider Bayes-optimal classifier of binary classification (no prior shift)

$$f_{\text{Bayes}}^*(\boldsymbol{x}) = \operatorname{sign}\left[p(y=+1|\boldsymbol{x}) - \frac{1}{2}\right]$$

We can rewrite it as $f_{Bayes}^*(\boldsymbol{x}) = sign \left[\pi_{tr} \frac{pos(\boldsymbol{x})}{unl(\boldsymbol{x})} - \frac{1}{2} \right]$ Density ratio!Another formulation is $f_{Bayes}^*(\boldsymbol{x}) = sign \left[\pi_{tr} - \frac{1}{2} \frac{unl(\boldsymbol{x})}{pos(\boldsymbol{x})} \right]$ Q1: How to modify when class prior shift occurs?

Q2: Which formulation is preferable?

Q1: Density ratio approach (shift)

Consider Bayes-optimal classifier of binary classification

$$f_{\text{Bayes}}^*(\boldsymbol{x}) = \text{sign} \begin{bmatrix} p(y=+1|\boldsymbol{x}) - \frac{1}{2} \end{bmatrix} \quad \begin{array}{l} \text{pos}(\boldsymbol{x}) : p(\boldsymbol{x}|y=1) \\ \text{neg}(\boldsymbol{x}) : p(\boldsymbol{x}|y=-1) \\ \text{unl}(\boldsymbol{x}) = \pi_{\text{tr}} \text{pos}(\boldsymbol{x}) + (1-\pi_{\text{tr}}) \text{neg}(\boldsymbol{x}) \end{bmatrix}$$

We can rewrite it as

$$f_{\text{Bayes}}^*(\boldsymbol{x}) = \text{sign} \left[\pi_{\text{tr}} \frac{\text{pos}(\boldsymbol{x})}{\text{unl}(\boldsymbol{x})} - \frac{\pi_{\text{tr}}(1 - \pi_{\text{te}})}{\pi_{\text{te}} + \pi_{\text{tr}} - 2\pi_{\text{tr}}\pi_{\text{te}}} \right]$$

Density ratio!

Another formulation is

$$f_{\text{Bayes}}^*(\boldsymbol{x}) = \text{sign}\left[\frac{\pi_{\text{te}} + \pi_{\text{tr}} - 2\pi_{\text{tr}}\pi_{\text{te}}}{(1 - \pi_{\text{te}})} - \frac{\text{unl}(\boldsymbol{x})}{\text{pos}(\boldsymbol{x})}\right]$$

Simply modifying the threshold can solve this problem!

Q2: Difficulty of density ratio estimation

In general, density ratio is **unbounded**.

$$r(oldsymbol{x}) = rac{p_{ ext{nu}}(oldsymbol{x})}{p_{ ext{de}}(oldsymbol{x})}$$

$r(\boldsymbol{x})$ is unbounded when $p_{de}(\boldsymbol{x}) = 0$. This raises issues of robustness and stability.

We show that the density ratio $\frac{\mathrm{pos}({m x})}{\mathrm{unl}({m x})}$ is bounded in PU classification. \bigodot

19

$pos(\boldsymbol{x}) : p(\boldsymbol{x}|y=1)$ $neg(\boldsymbol{x}) : p(\boldsymbol{x}|y=-1)$ $unl(\boldsymbol{x}) = \pi_{tr}pos(\boldsymbol{x}) + (1 - \pi_{tr})neg(\boldsymbol{x})$ Q2: Density ratio in PU In **PU classification**, density ratio $\frac{pos(x)}{unl(x)}$ is bounded. $0 \le \frac{pos(\boldsymbol{x})}{unl(\boldsymbol{x})} \le \frac{1}{\pi_{tr}}$ Lower and upper bounded \bigcirc $\pi_{tr} \leq \frac{unl(\boldsymbol{x})}{pos(\boldsymbol{x})}$ Unbounded from above (•___) Insight: estimate $\frac{pos(x)}{unl(x)}$ is preferable.

Our experimental results agree with this observation.

Experiments: class prior shift train 0.7 -> test 0.3

Datasets: banana, ijcnn1, MNIST, susy, cod-rna, magic

Methods:

- Density ratio $\frac{pos(\boldsymbol{x})}{unl(\boldsymbol{x})}$ ($\frac{\boldsymbol{p}}{\boldsymbol{u}}$ uLSIF)
- Density ratio $\frac{\operatorname{unl}(\boldsymbol{x})}{\operatorname{pos}(\boldsymbol{x})}$ ($\frac{\boldsymbol{u}}{\boldsymbol{p}}$ uLSIF)
- Linear-in input model (Lin): Double hinge loss (DH-Lin), squared loss (Sq-Lin)
- Kernel model (Ker): Double hinge loss (DH-Ker), squared loss (Sq-Ker)

Parameter selection: (regularization, kernel width) 5-fold cross-validation.

We also investigated when wrong test class prior is given.

Results reported in mean and std. error of accuracy of 10 trials. Outperforming methods are bolded based on one-sided t-test with significance level 5%. Dataset information and more experiments and can be found in the paper.

Results: class prior shift $\pi_{\rm tr} = 0.7, \pi_{\rm te} = 0.3$ 21

	Dataset	π^{g}	$\frac{u}{p}$ uLSIF	$\frac{p}{u}$ uLSIF	DH-Lin	DH-Ker	Sq-Lin	Sq-Ker	_
ſ	banana		83.0(1.0)	$86.4\ (0.5)$	70.2(0.5)	78.3(1.0)	70.0(0.0)	83.4(0.4)	
	ijcnn1		70.8(0.6)	$74.2 \ (0.7)$	70.0(0.1)	69.8(0.2)	71.5(0.3)	69.2(0.5)	Correct tost
	MNIST	π'	79.3(0.5)	$81.7 \ (0.5)$	74.0(1.1)	82.4(1.0)	52.3(1.4)	83.4(0.9)	Correct test
	susy	0.3	74.3(0.5)	$76.0 \ (0.3)$	72.7(0.6)	70.0(0.0)	75.5(1.4)	74.7(0.7)	prior is given
	cod-rna		82.1(1.0)	82.8(0.8)	87.3 (0.7)	77.3(0.8)	85.2(1.1)	80.2(1.0)	
	magic		71.5(0.7)	75.8(0.6)	72.7(1.1)	70.8(0.4)	75.0(1.0)	72.9(0.7)	
ſ	banana		84.7(1.1)	88.7(0.7)	54.9(1.4)	81.7(1.6)	53.6(1.2)	83.8(1.3)	1
	ijcnn1		64.9(1.4)	66.6(1.0)	60.4(1.4)	51.6(3.0)	62.2(1.2)	48.2(2.8)	Wrong test
	MNIST	0.5	81.9(0.4)	84.1 (0.6)	72.5(1.0)	82.5(0.7)	52.9(1.1)	81.9(0.9)	
	susy		75.9(1.1)	77.0 (0.6)	67.5(1.4)	75.5(0.6)	71.6(1.0)	72.8(1.1)	prior is given
	cod-rna		85.3(0.7)	85.4(0.5)	86.2(0.7)	80.1(1.1)	86.5(0.9)	81.2(1.2)	
	magic		67.6(0.8)	73.6 (0.9)	72.6(0.7)	62.4(1.9)	71.8(0.7)	68.9(0.8)	
ľ	banana		80.6(1.3)	82.1(1.1)	31.8(0.9)	48.9(1.5)	30.0(0.0)	69.9(1.1)	1
	ijcnn1		35.2(1.4)	42.4(0.9)	30.0(0.0)	30.0(0.0)	32.4(0.5)	30.9(0.4)	
	MNIST	π	79.9 (0.7)	72.6(0.6)	71.1(1.1)	64.8(1.1)	64.0(0.6)	74.2(1.0)	Traditional PU
	susy	0.7	35.6(3.1)	44.2(2.9)	30.0(0.0)	30.0(0.0)	42.0(1.5)	36.8(1.3)	
	cod-rna		77.7(2.2)	77.8(2.1)	79.6 (0.7)	67.8(0.8)	78.2(0.5)	68.3(1.0)	
	magic		51.6(0.3)	60.3(1.5)	56.2(2.7)	32.8(0.7)	58.7(1.4)	50.1(1.6)	
	-				· · · ·				

Preferable method in our experiments (density ratio $\frac{p}{n}$ uLSIF)

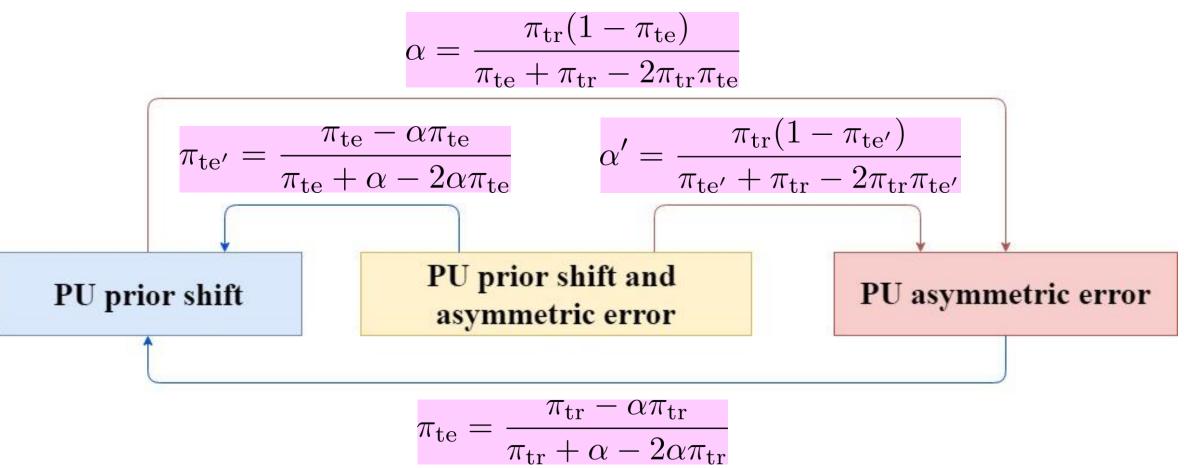
PU classification with asymmetric error

- Given: Given two sets of sample: Positive $X_{\mathrm{P}} := \{ \boldsymbol{x}_{i}^{\mathrm{P}} \}_{i=1}^{n} \stackrel{\text{i.i.d.}}{\sim} \operatorname{pos}(\boldsymbol{x})$ Unlabeled $X_{\mathrm{U}} := \{ \boldsymbol{x}_{i}^{\mathrm{U}} \}_{i=1}^{n'} \stackrel{\text{i.i.d.}}{\sim} \pi_{\mathrm{tr}} \operatorname{pos}(\boldsymbol{x}) + (1 - \pi_{\mathrm{tr}}) \operatorname{neg}(\boldsymbol{x})$
- Goal: Find a prediction function ${\boldsymbol{\mathcal{G}}}$ that minimizes

$$R_{\text{Asym}}^{\ell}(g) = (1 - \alpha) \pi_{\text{tr}} \mathbb{E}_{\text{P}} \left[\ell(g(\boldsymbol{x}_{\text{P}})) \right] + \alpha (1 - \pi_{\text{tr}}) \mathbb{E}_{\text{N}} \left[\ell(-g(\boldsymbol{x}_{\text{N}})) \right]$$

Reduce to symmetric error when $\alpha = 0.5$

The equivalence of prior shift and asymmetric error



We can relate these problems based on the analysis of Bayes-optimal classifier.

Conclusion

Class prior shift may heavily degrade the performance of positive-unlabeled classification (PU classification).

- Proposed two approaches for handling this problem effectively:
 - Risk minimization approach
 - Density ratio approach
- Showed the equivalence of class prior shift and asymmetric error problems in PU classification.
 - Our methods are applicable for both problems.
 - Also applicable when considering both problems simultaneously.
- Poster: #31: May 2nd from 7:00-9:00PM